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Preface

About the Course

Environmental Geology Is Geology Applied 
to Living
The environment is the sum of all the features and conditions 
surrounding an organism that may influence it. An individu-
al’s physical environment encompasses rocks and soil, air 
and  water, such factors as light and temperature, and other or-
ganisms. One’s social environment might include a network 
of family and friends, a particular political system, and a set 
of social customs that affect one’s behavior.

Geology is the study of the earth. Because the earth pro-
vides the basic physical environment in which we live, all of 
geology might in one sense be regarded as environmental geol-
ogy. However, the term environmental geology is usually re-
stricted to refer particularly to geology as it relates directly to 
human activities, and that is the focus of this book. Environ-
mental geology is geology applied to living. We will examine 
how geologic processes and hazards influence human activities 
(and sometimes the reverse), the geologic aspects of pollution 
and waste-disposal problems, and several other topics.

Why Study Environmental Geology?
One reason for studying environmental geology might simply 
be curiosity about the way the earth works, about the how and 
why of natural phenomena. Another reason is that we are in-
creasingly faced with environmental problems to be solved and 
decisions to be made, and in many cases, an understanding of 
one or more geologic processes is essential to making informed 
choices or finding appropriate solutions.

Of course, many environmental problems cannot be fully 
assessed and solved using geologic data alone. The problems 
vary widely in size and in complexity. In a specific instance, 
data from other branches of science (such as biology, chemistry, 
or ecology), as well as economics, politics, social priorities, and 
so on may have to be taken into account. Because a variety of 
considerations may influence the choice of a solution, there is 
frequently disagreement about which solution is “best.” Our 
personal choices will often depend strongly on our beliefs about 
which considerations are most important.

About the Book

An introductory text cannot explore all aspects of environmen-
tal concerns. Here, the emphasis is on the physical constraints 
imposed on human activities by the geologic processes that 
have shaped and are still shaping our natural environment. In a 
real sense, these are the most basic, inescapable constraints; we 
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cannot, for instance, use a resource that is not there, or build a 
secure home or a safe dam on land that is fundamentally un-
stable. Geology, then, is a logical place to start in developing an 
understanding of many environmental issues. The principal 
aim of this book is to present the reader with a broad overview 
of environmental geology. Because geology does not exist in a 
vacuum, however, the text introduces related considerations 
from outside geology to clarify other ramifications of the sub-
jects discussed. Likewise, the present does not exist in isolation 
from the past and future; occasionally, the text looks at both 
how the earth developed into its present condition and where 
matters seem to be moving for the future. It is hoped that this 
knowledge will provide the reader with a useful foundation for 
discussing and evaluating specific environmental issues, as 
well as for developing ideas about how the problems should be 
solved.

Features Designed for the 
Student

This text is intended for an introductory-level college course. It 
does not assume any prior exposure to geology or college-level 
mathematics or science courses. The metric system is used 
throughout, except where other units are conventional within a 
discipline. (For the convenience of students not yet “fluent” in 
metric units, a conversion table is included in Appendix C, and 
in some cases, metric equivalents in English units are included 
within the text.)

Each chapter opens with an introduction that sets the 
stage for the material to follow. In the course of the chapter, 
important terms and concepts are identified by boldface type, 
and these terms are collected as “Key Terms and Concepts” at 
the end of the chapter for quick review. The Glossary includes 
both these boldface terms and the additional, italicized terms 
that many chapters contain. Each chapter includes one or 
more case studies. Some involve a situation, problem, or ap-
plication that might be encountered in everyday life. Others 
offer additional case histories or examples relevant to chapter 
contents. Every chapter concludes with review exercises, 
which allow students to test their comprehension and apply 
their knowledge. The “Exploring Further” section of each 
chapter includes a number of activities in which students can 
engage, some involving online data, and some, quantitative 
analysis. For  example, they may be directed to examine real-
time stream-gaging or landslide-monitoring data, or informa-
tion on current or recent earthquake activity; they can 
manipulate historic climate data from NASA to examine 
trends by region or time period; they may calculate how big a 
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wind farm or photovoltaic array would be required to replace 
a conventional power plant; they can even learn how to reduce 
sulfate pollution by buying SO2 allowances.

Any text of this kind must necessarily be a snapshot in 
time: The earth keeps evolving and presenting us with new 
geologic challenges; our understanding of our world advances; 
our responses to our environment change. And of course, there 
is vastly more relevant material that might be included than 
will fit in one volume. To address both of these issues, at least 
in part, two kinds of online resources have been developed for 
each chapter. One is “NetNotes,” a modest collection of Inter-
net sites that provide additional information and/or images rel-
evant to the chapter content, or may serve as sources of newer 
data as they become available. The NetNotes should prove use-
ful to both students and instructors. An effort has been made to 
concentrate on sites with material at an appropriate level for the 
book’s intended audience and also on sites likely to be rela-
tively stable in the very fluid world of the Internet (government 
agencies, educational institutions, or professional-association 
sites). The other resource is “Suggested Readings/References,” 
some of which can also be accessed online. These are a mix of 
background material and articles that feature additional ideas 
or examples pertinent to the chapter. 

New and Updated Content

Environmental geology is, by its very nature, a dynamic field 
in which new issues continue to arise and old ones to evolve. 
Every chapter has been updated with regard to data, examples, 
and figures.

Illustrations Geology is a visual subject, and photographs, 
satellite imagery, diagrams, and graphs all enhance 
students’ learning. Accordingly, this edition includes 
more than one hundred new or improved photographs/
images and nearly sixty new figures, and revisions have 
been made to dozens more.

Content additions and revisions to specific chapters include:

Chapter 1 Population data and projections have been 
updated.

Chapter 2 Case Study 2 updated to reflect the current status 
of the Libby vermiculite site cleanup.

Chapter 3 Case Study 3 expanded to highlight some 
remaining questions about the details of plate tectonics.

Chapter 4 New major earthquakes have been added. The 
phenomenon of slow-slip earthquakes is introduced. 
Treatment of induced seismicity, especially as related to 
fracking, is expanded, as is discussion of the hazard 
represented by the Cascadia subduction zone. 
Earthquake hazard maps are updated. Results of  
appeals in the trials connected with the l’Aquila, 
Italy, earthquake are noted.

Chapter 5 Fractional crystallization as a means of 
modifying magma composition is added. New 

information on Yellowstone caldera presented. The 
deadly 2018 pyroclastic flows at Volcán de Fuego are 
described. Case Study 5.1 now includes the Kilauea 
activity that threatened Pahoa in 2014, and the more-
extensive and varied activity of 2018.

Chapter 6 Information on more-recent flood events added. 
Discussions of flash floods, and of the role of hurricanes 
in inland flooding, expanded. New material on flood 
warnings.

Chapter 7 Updated with expanded coverage of Hurricane/
Superstorm Sandy, including a connection between the 
damage and climate change, and addition of material on 
Hurricanes Harvey, Irma, and Maria. Storm tide added 
to discussion of storm surge.

Chapter 8 Images and discussion of the recent Big Sur, Oso, 
and Bingham Canyon slides added; coverage of the 
Attabad slide and Yosemite rockfalls expanded; the 
Montecito slide added as an illustration of the role of 
wildfires in increasing slide hazards.

Chapter 9 New data on the dwindling of alpine glaciers 
presented. Vulnerability of areas around the globe to 
desertification is illustrated.

Chapter 10 New/updated information on Arctic sea-ice cover, 
global temperatures, atmospheric CO2 levels, effects of 
permafrost melting, heat storage in the oceans. New 
material on recent trends in temperature and precipitation 
in the contiguous United States and on the latest 
Australian heat wave. New section on geoengineering.

Chapter 11 U.S. water-use and groundwater-storage figures 
updated; new data on soil moisture added. Updates on 
recent subsidence in the San Joaquin valley and on the 
state of the Aral Sea. New Case Study 11 focuses on 
the Colorado River and includes information on the 
drought-enhanced depletion of Lake Mead.

Chapter 12 Updated data on U.S. soil erosion by wind and 
water and expanded discussion of changes over the past 
several decades. Patterns of soil composition across the 
contiguous 48 states presented.

Chapter 13 All tables of U.S. and world mineral reserves, 
resources, production, and consumption updated. 
Expanded coverage of U.S. import dependence, overall 
and in connection with materials in mobile devices. 
Case Study 13.1 updates the role of China in world REE 
supply and the status of the U.S. Mountain Pass mine.

Chapter 14 All data on U.S. and world reserves, and U.S. 
production and consumption, of fossil fuels updated. 
Expanded discussion of hydraulic fracturing, including 
its impact on gas reserves; expanded treatment of the 
Deepwater Horizon accident. Current status of the 
debate on oil leasing in the Arctic National Wildlife 
Reserve noted.

Chapter 15 World energy production by source and 
consumption projections updated. Current status of the 
Fukushima cleanup and the effects of the accident on 
global use of nuclear fission power discussed, with 
updated figures on power reactors worldwide. Current 
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U.S. use of renewable energy presented, noting the 
expanding use of wind power and the effects of western 
drought on hydropower availability.

Chapter 16 Updates on U.S. and selected other countries’ 
waste-disposal strategies, including recycling; status of 
radioactive-waste disposal worldwide. New data on 
numbers of National Priorities List Superfund sites in 
the United States and on sites with cleanup completed.

Chapter 17 Chapter partially reorganized for better flow. 
New information on industrial sources of water-pollutant 
discharge and on water pollution detections in 
groundwater from municipal wells nationwide. Expanded/
updated coverage of mercury in fish and shellfish, and 
fish consumption advisories in U.S. lakes and streams.

Chapter 18 Updates on U.S. emissions by type and source, 
with separate treatment of fine particulates, and 
information on the global effects of fine particulates on 
health. New data on U.S. air quality and trends, and 
pH, sulfate, and nitrate in precipitation. Improved 
presentation of global ozone distribution by season; 
current status of the Antarctic ozone hole, recent ozone 
depletion over the Arctic. Case Study 18 includes 
expanded coverage of radon as an indoor air-pollution 
hazard, and regional variations in that hazard.

Chapter 19 The Paris Agreement, including key provisions 
and the status of U.S. involvement, added, together with 
related data on changes in global CO2 emissions since 
2000, and China’s rapidly rising share. Expanded 
discussion of Arctic land claims for potential resource 
development. Updated data on ozone-depleting 
substances and the Montreal Protocol, and Environmental 
Impact Statement filings. New information on the 
financial pressures on the federal flood-insurance 
program in light of recent severe storms. Status of the 
Keystone XL pipeline project updated in Case Study 19.

Chapter 20 New/updated information on U.S. land cover/use 
and changes since 1982; U.S. population-density map 
updated to reflect the latest census. New Case Study 
20.2, on the Oroville Dam spillway incident of 2017.

The online “NetNotes” have been checked, all URLs 
confirmed, corrected, or deleted as appropriate, and new en-
tries have been added for every chapter. The “Suggested  
Readings/References” have likewise been updated, with some 
older materials removed and new items added in each chapter.

Organization

The book starts with some background information: a brief 
outline of earth’s development to the present, and a look at one 
major reason why environmental problems today are so 
pressing—the large and rapidly growing human population. 
This is followed by a short discussion of the basic materials of 
geology—rocks and minerals—and some of their physical 
properties, which introduces a number of basic terms and con-
cepts that are used in later chapters.

The next several chapters treat individual processes in 
detail. Those examined in the second section are relatively 
large-scale processes, which can involve motions and forces in 
the earth hundreds of kilometers below the surface, and may 
lead to dramatic, often catastrophic events like earthquakes 
and volcanic eruptions. Other processes—such as the flow of 
rivers and glaciers or the blowing of the wind—occur only 
near the earth’s surface, altering the landscape and occasion-
ally causing their own special problems. These are the focus of 
the third section. In some cases, geologic processes can be 
modified, deliberately or accidentally; in others, human 
 activities must be adjusted to natural realities. The section on 
surface processes concludes with a chapter on climate, which 
connects or affects a number of the surface processes  described 
earlier.

A subject of increasing current concern is the availability 
of resources. A series of five chapters deals with water re-
sources, soil, minerals, and energy; the rates at which they are 
being consumed; probable amounts remaining; and projections 
of future availability and use. Climate change may be affecting 
the availability and distribution of water resources. In the case 
of energy resources, we consider both those sources extensively 
used in the past and new sources that may or may not success-
fully replace them in the future.

Increasing population and increasing resource consump-
tion lead to an increasing volume of waste to be disposed of; 
thoughtless or inappropriate waste disposal, in turn, commonly 
creates increasing pollution. The three chapters of the fifth sec-
tion examine the interrelated problems of air and water pollu-
tion and the strategies available for the disposal of various 
kinds of wastes.

The final two chapters deal with a more diverse assort-
ment of subjects. Environmental problems spawn laws intended 
to solve them; chapter 19 looks briefly at a sampling of laws, 
policies, and international agreements related to geologic mat-
ters discussed earlier in the book, and some of the problems 
with such laws and accords. Chapter 20 examines geologic con-
straints on construction schemes and the broader issue of trying 
to determine the optimum use(s) for particular parcels of 
land—matters that become more pressing as population growth 
pushes more people to live in marginal places.

Relative to the length of time we have been on earth, 
 humans have had a disproportionate impact on this planet. 
 Appendix A explores the concept of geologic time and its mea-
surement and looks at the rates of geologic and other processes 
by way of putting human activities in temporal perspective. 
 Appendix B provides short reference keys to aid in rock and 
mineral identification, and Appendix C includes units of mea-
surement and conversion factors.

Of course, the complex interrelationships among geo-
logic processes and features mean that any subdivision into 
chapter-sized pieces is somewhat arbitrary, and different in-
structors may prefer different sequences or groupings (streams 
and groundwater together, for example). An effort has been 
made to design chapters so that they can be resequenced in such 
ways without great difficulty.
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  1

Planet and Population:  
An Overview 

SECTION I  |  FOUNDATIONS

CHAPTER 1

Geology provides the ground we live on, the soil in which our crops are grown, many of the mineral and energy resources on which 
we depend, and even striking scenery. Over a thousand years ago, the Ancestral Puebloans found shelter and building materials amid 
the cliffs in what is now Mesa Verde National Park.

©Carla Montgomery.

geologic materials; in some respects, humans have even 
learned to modify natural processes that inconvenience or 
threaten them. As we have learned how to study our planet in 
systematic ways, we have developed an ever-increasing un-
derstanding of the complex nature of the processes shaping, 
and the problems posed by, our geological environment. Envi-
ronmental geology explores the many and varied interactions 
between humans and that geologic environment.

As the human population grows, these interactions ex-
pand. It becomes increasingly difficult for us to survive on the 
resources and land remaining, to avoid those hazards that can-
not be controlled, and to refrain from making irreversible and 
undesirable changes in environmental systems. The urgency of 
perfecting our understanding, not only of natural processes but 

About five billion years ago, out of a swirling mass of gas and 
dust, evolved a system of varied planets hurtling around a 
nuclear-powered star—our solar system. One of these planets, 
and one only, gave rise to complex life-forms. Over time, a tre-
mendous diversity of life-forms and ecological systems devel-
oped, while the planet, too, evolved and changed, its interior 
churning, its landmasses shifting, its surface constantly being 
reshaped. Within the last several million years, the diversity of 
life on earth has included humans, increasingly competing for 
space and survival on the planet’s surface. With the control 
over one’s surroundings made possible by the combination of 
intelligence and manual dexterity, humans have found most of 
the land on the planet inhabitable; they have learned to use not 
only plant and animal resources, but minerals, fuels, and other 
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2 Section One Foundations

also of our impact on the planet, is becoming more and more 
apparent worldwide, and has motivated increased international 
cooperation and dialogue on environmental issues. In 1992, 
more than 170 nations came together in Rio de  Janeiro for the 
United Nations Conference on Environment and  Development, 
to address such issues as global climate change, sustainable 
development, and environmental protection. The resultant UN 
Framework Convention on Climate Change marked the start of 
a series of meetings and agreements on environmental issues 

that continues to this day; the most recent such agreement, 
adopted in Paris in 2016, involves commitment to limit carbon 
emissions and global warming. These and other environmental 
accords will be explored further in chapters 17 and 19. For now, 
we can note that even when nations agree on what the prob-
lematic issues are (and this is not always the case!), agreement 
on solutions is commonly more difficult to achieve, and imple-
mentation of those solutions frequently both complex and slow. 
Meanwhile, global population continues to grow.

1.1 Earth in Space and Time

The Early Solar System
In recent decades, scientists have been able to construct an ever-
clearer picture of the origins of the solar system and, before that, 
of the universe itself. Most astronomers now accept some sort of 
“Big Bang” as the origin of today’s universe. Just before it oc-
curred, all matter and energy would have been compressed into an 
enormously dense, hot volume a few millimeters (much less than 
an inch) across. Then everything was flung violently apart across 
an ever-larger volume of space. The time of the Big Bang can be 
estimated in several ways. Perhaps the most direct is the back-
calculation of the universe’s expansion to its apparent beginning. 
Other methods depend on astrophysical models of creation of the 
elements or the rate of evolution of different types of stars. Most 
age estimates overlap in the range of 12 to 14 billion years.

Stars formed from the debris of the Big Bang, as locally 
high concentrations of mass were collected together by gravity, 
and some became large and dense enough that energy-releasing 
atomic reactions were set off deep within them. Stars are not 
permanent objects. They are constantly losing energy and mass 
as they burn their nuclear fuel. The mass of material that ini-

tially formed the star determines how rapidly the star burns; 
some stars burned out billions of years ago, while others are 
probably forming now from the original matter of the universe 
mixed with the debris of older stars.

Our sun and its system of circling planets, including the 
earth, are believed to have formed from a rotating cloud of gas 
and dust (small bits of rock and metal), some of the gas debris 
from older stars (figure 1.1). Most of the mass of the cloud co-
alesced to form the sun, which became a star and began to 
“shine,” or release light energy, when its interior became so dense 
and hot from the crushing effects of its own gravity that nuclear 
reactions were triggered inside it. Meanwhile, dust condensed 
from the gases remaining in the flattened cloud disk rotating 
around the young sun. The dust clumped into planets, the forma-
tion of which was essentially complete over 4½ billion years ago.

The Planets
The compositions of the planets formed depended largely on 
how near they were to the hot sun. The planets formed nearest 
to the sun contained mainly metallic iron and a few minerals 
with very high melting temperatures, with little water or gas. 
Somewhat farther out, where temperatures were lower, the 

Disk of gas and dust
spinning around the young sun

Dust grains

Dust grains clump
into planetesimals

Planetesimals collide
and collect into planets

Figure 1.1
Our solar system formed as dust condensed from the gaseous nebula, then clumped together to make planets.
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 Chapter One Planet and Population: An Overview 3

in question likely are inorganic, though the search for Martian 
microbes continues.

Earth, Then and Now
The earth has changed continuously since its formation, undergo-
ing some particularly profound changes in its early history. The 
early earth was very different from what it is today, lacking the 
modern oceans and atmosphere and having a much different sur-
face from its present one, probably more closely resembling the 
barren, cratered surface of the moon. Like other planets, Earth 
was formed by accretion, as gravity collected together the solid 
bits that had condensed from the solar nebula. Some water may 
have been contributed by gravitational capture of icy comets, 
though recent analyses of modern comets do not suggest that this 
was a major water source. The planet was heated by the impact of 
the colliding dust particles and meteorites as they came together 
to form the earth, and by the energy release from decay of the 
small amounts of several naturally radioactive elements that the 
earth contains. These heat sources combined to raise the earth’s 
internal temperature enough that parts of it, perhaps eventually 
most of it, melted, although it was probably never molten all at 
once. Dense materials, like metallic iron, would have tended to 
sink toward the middle of the earth. As cooling progressed, 
lighter, low-density minerals crystallized and floated out toward 
the surface. The eventual result was an earth differentiated into 
several major compositional zones: the central core, the sur-
rounding mantle, and a thin crust at the surface (see figure 1.3). 
The process was complete well before 4 billion years ago.

Although only the crust and a few bits of uppermost mantle 
that are carried up into the crust by volcanic activity can be sam-
pled and analyzed directly, we nevertheless have a good deal of 
information on the composition of the earth’s interior. First, sci-
entists can estimate from analyses of stars the starting composi-
tion of the cloud from which the solar system formed. Geologists 
can also infer aspects of the earth’s bulk composition from analy-
ses of certain meteorites believed to have formed at the same time 

developing planets incorporated much larger amounts of lower-
temperature minerals, including some that contain water locked 
within their crystal structures. (This later made it possible for 
the earth to have liquid water at its surface.) Still farther from 
the sun, temperatures were so low that nearly all of the materi-
als in the original gas cloud condensed—even materials like 
methane and ammonia, which are gases at normal earth surface 
temperatures and pressures.

The result was a series of planets with a variety of com-
positions, most quite different from that of Earth. This is con-
firmed by observations and measurements of the planets. For 
example, the planetary densities listed in table 1.1 are  consistent 
with a higher metal and rock content in the four planets closest 
to the sun and a much larger proportion of ice and gas in the 
planets farther from the sun (see also figure 1.2). These differ-
ences should be kept in mind when it is proposed that other 
planets could be mined for needed minerals. Both the basic 
chemistry of these other bodies and the kinds of ore-forming or 
other resource-forming processes that might occur on them 
would differ considerably from those on Earth, and may not 
have led to products we would find useful. (This is leaving aside 
any questions of the economics or technical practicability of 
such mining activities!) In addition, our principal current en-
ergy sources required living organisms to form, and so far, no 
such life-forms have been found on other planets or moons. 
Venus—close to Earth in space, similar in size and density—
shows marked differences: Its dense, cloudy atmosphere is thick 
with carbon dioxide, producing planetary surface temperatures 
hot enough to melt lead through runaway greenhouse-effect 
heating (see chapter 10). Mars would likewise be inhospitable: 
It is very cold, and we could not breathe its atmosphere. Though 
its surface features indicate the presence of liquid water in its 
past, there is none now, and only small amounts of water ice 
have been found. There is not so much as a blade of grass for 
vegetation; the brief flurry of excitement over possible evidence 
of life on Mars referred only to fossil microorganisms, and 
more-intensive investigations suggested that the tiny structures 

Table 1.1 Some Basic Data on the Planets

Planet
Mean Distance from 
Sun (millions of km)

Mean  
Temperature (°C)

Equatorial Diameter, 
Relative to Earth

Density*  
(g/cu. cm)

Mercury   58    167  0.38 5.4

Venus  108   464  0.95 5.2   Predominantly rocky/metal 

Earth  150     15  1.00 5.5  planets

Mars  228   −65  0.53 3.9

Jupiter  778    −110     11.19 1.3

Saturn 1427  −140  9.41 0.7  
Gaseous planets

Uranus 2870  −195  4.06    1.3

Neptune 4479 −200  3.88   1.6

Source: Data from NASA.

*No other planets have been extensively sampled to determine their compositions directly, though we have some data on their surfaces. Their approximate bulk compositions are inferred from 
the assumed starting composition of the solar nebula and the planets’ densities. For example, the higher densities of the inner planets reflect a significant iron content and relatively little gas.
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Figure 1.2
The planets of the solar system vary markedly in both composi-
tion and physical properties. For example, Mercury (A), as shown 
in this image from a 2008 Messenger spacecraft flyby, is rocky, 
iron-rich, dry, and pockmarked with craters. Mars (B) shares many 
surface features with Earth (volcanoes, canyons, dunes, slumps, 
stream channels, and more), but the surface is now dry and bar-
ren; (C) a 2008 panorama by the Mars rover Spirit. Jupiter (D) is a 
huge gas ball, with no solid surface at all, and dozens of moons 
of ice and rock that circle it to mimic the solar system in miniature. 
Note also the very different sizes of the planets (E). The Jovian 
 planets—named for Jupiter—are gas giants; the terrestrial planets 
are more rocky, like Earth.

Sources: (A) NASA image courtesy Science Operations Center at 
Johns Hopkins University Applied Physics Laboratory; (B) NASA; 
(C) Image courtesy NASA/JPL/Cornell; (D) NSSDC Goddard Space 
Flight Center; (E) NASA.
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as, and under conditions similar to, the earth. Geophysical data 
demonstrate that the earth’s interior is zoned and also provide 
information on the densities of the different layers within the 
earth, which further limits their possible compositions. These 
and other kinds of data indicate that the earth’s core is made up 
mostly of iron, with some nickel and a few minor elements; the 
outer core is molten, the inner core solid. The mantle consists 
mainly of iron, magnesium, silicon, and oxygen combined in 
varying proportions in several different minerals. The earth’s 
crust is much more varied in composition and very different 
chemically from the average composition of the earth (see 
table 1.2). As is evident from this table, many of the metals we 
have come to prize as resources are relatively uncommon ele-
ments in the crust. Crust and uppermost mantle together form a 
somewhat brittle shell around the earth.

The heating and subsequent differentiation of the early 
earth led to another important result: formation of the atmo-
sphere and oceans. Many minerals that had contained water or 
gases in their crystals released them during the heating and melt-
ing, and as the earth’s surface cooled, the water could condense 
to form the oceans. Without this abundant surface water, which 
in the solar system is unique to Earth, most life as we know it 
could not exist. The oceans filled basins, while the continents, 
buoyant because of their lower-density rocks and minerals, stood 
above the sea surface. At first, the continents were barren of life.

The earth’s early atmosphere was quite different from the 
modern one, aside from the effects of modern pollution. The 

first atmosphere had little or no free oxygen in it. It probably 
consisted dominantly of nitrogen and carbon dioxide (the gas 
most commonly released from volcanoes, aside from water) 
with minor amounts of such gases as methane, ammonia, and 
various sulfur gases. Humans could not have survived in this 
early atmosphere. Oxygen-breathing life of any kind could not 
exist before the single-celled blue-green algae appeared in large 

Figure 1.3
A chemically differentiated Earth. The core consists mostly of iron; the outer part is molten. The mantle, the largest zone, is made up 
primarily of ferromagnesian silicates (see chapter 2) and, at great depths, of oxides of iron, magnesium, and silicon. The crust (not 
drawn to scale, but exaggerated vertically in order to be visible at this scale) forms a thin skin around the earth. Oceanic crust, which 
forms the sea floor, has a composition somewhat like that of the mantle, but is richer in silicon. Continental crust is both thicker and 
less dense. It rises above the oceans and contains more light minerals rich in calcium, sodium, potassium, and aluminum. The “plates” 
of plate tectonics (the lithosphere) comprise the crust and uppermost mantle. (100 km ≈ 60 miles)
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Table 1.2 Most Common Chemical Elements  
in the Earth

W H O L E  E A R T H C R U S T

 
Element

Weight
Percent

 
Element

Weight
Percent

Iron 32.4 Oxygen 46.6

Oxygen 29.9 Silicon 27.7

Silicon 15.5 Aluminum 8.1

Magnesium 14.5 Iron 5.0

Sulfur 2.1 Calcium 3.6

Nickel 2.0 Sodium 2.8

Calcium 1.6 Potassium 2.6

Aluminum 1.3 Magnesium 2.1

(All others, total) .7 (All others, total) 1.5

(Compositions cited are averages of several independent estimates.)
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4.5 billion years ago

Precam
brian

Proterozoic

Archean

Figure 1.4
The “geologic spiral”: Important plant and animal groups appear where they first occurred in significant numbers. If earth’s whole his-
tory were equated to a 24-hour day, modern thinking humans (Homo sapiens) would have arrived on the scene just about six seconds 
ago. For another way to look at these data, see table A.1 in appendix A.

Source: Modified after U.S. Geological Survey publication Geologic Time.

numbers to modify the atmosphere. Their remains are found in 
rocks as much as several billion years old. They manufacture 
food by photosynthesis, using sunlight for energy, consuming 
carbon dioxide, and releasing oxygen as a by-product. In time, 
enough oxygen accumulated that the atmosphere could support 
oxygen-breathing organisms.

Life on Earth
The rock record shows when different plant and animal 
groups appeared. Some are represented schematically in 
figure 1.4. The earliest creatures left very few remains be-
cause they had no hard skeletons, teeth, shells, or other hard 
parts that could be preserved in rocks. The first multicelled 
oxygen-breathing creatures probably developed about 1 billion 

years ago, after oxygen in the atmosphere was well estab-
lished. By about 550 million years ago, marine animals with 
shells had become widespread.

The development of organisms with hard parts—shells, 
bones, teeth, and so on—greatly increased the number of pre-
served animal remains in the rock record; consequently, bio-
logical developments since that time are far better understood. 
Dry land was still barren of large plants or animals half a 
billion years ago. In rocks about 500 million years old is the 
first evidence of animals with backbones—the fish—and soon 
thereafter, early land plants developed, before 400 million 
years ago. Insects appeared approximately 300 million years 
ago. Later, reptiles and amphibians moved onto the conti-
nents. The dinosaurs appeared about 200 million years ago 
and the first mammals at nearly the same time. Warm-blooded 
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animals took to the air with the development of birds about 
150 million years ago, and by 100 million years ago, both 
birds and mammals were well established.

Such information has current applications. Certain en-
ergy sources have been formed from plant or animal remains. 
Knowing the times at which particular groups of organisms 
appeared and flourished is helpful in assessing the probable 
amounts of these energy sources available and in concentrating 
the search for these fuels on rocks of appropriate ages.

On a timescale of billions of years, human beings have 
just arrived. The most primitive human-type remains are no 
more than 4 to 5 million years old, and modern, rational hu-
mans (Homo sapiens) developed only about half a million 
years ago. Half a million years may sound like a long time, 
and it is if compared to a single human lifetime. In a geo-
logic sense, though, it is a very short time. If we equate the 
whole of earth’s history to a 24-hour day, then shelled organ-
isms appeared only about 3 hours ago; fish, about 2 hours 
and 40 minutes ago; land plants, 2 hours ago; birds, about 
45 minutes ago—and Homo sapiens has been around for just 
the last 6 seconds. Nevertheless, we humans have had an 
enormous impact on the earth, at least at its surface, an 
 impact far out of proportion to the length of time we have 
occupied it. Our impact is likely to continue to increase 
 rapidly as the population does likewise.

1.2 Geology, Past and Present

Two centuries ago, geology was mainly a descriptive sci-
ence involving careful observation of natural processes and 
their products. The subject has become both more quantita-
tive and more interdisciplinary through time. Modern geo-
scientists draw on the principles of chemistry to interpret 
the compositions of geologic materials, apply the laws of 
physics to explain these materials’ physical properties and 
behavior, use the biological sciences to develop an under-
standing of ancient life-forms, and rely on engineering prin-
ciples to design safe structures in the presence of geologic 
hazards. The emphasis on the “why,” rather than just the 
“what,” has also increased.

The Geologic Perspective
Geologic observations now are combined with laboratory 
experiments, careful measurements, and calculations to de-
velop theories of how natural processes operate. Geology is 
especially challenging because of the disparity between the 
scientist’s laboratory and nature’s. In the research labora-
tory, conditions of temperature and pressure, as well as the 
flow of chemicals into or out of the system under study, can 
be carefully controlled. One then knows just what has gone 
into creating the product of the experiment. In nature, the 
geoscientist is often confronted only with the results of the 
“experiment” and must deduce the starting materials and 
processes involved.

Another complicating factor is time. The laboratory sci-
entist must work on a timescale of hours, months, years, or, at 
most, decades. Natural geologic processes may take a million or 
a billion years to achieve a particular result, by stages too slow 
even to be detected in a human lifetime (table 1.3). This under-
standing may be one of the most significant contributions of 
early geoscientists: the recognition of the vast length of geo-
logic history, sometimes described as “deep time.” The qualita-
tive and quantitative tools for sorting out geologic events and 
putting dates on them are outlined in appendix A. For now, it is 
useful to bear in mind that the immensity of geologic time can 
make it difficult to arrive at a full understanding of how geo-
logic processes operated in the past from observations made on 
a human timescale. It dictates caution, too, as we try to project, 
from a few years’ data on global changes associated with human 
activities, all of the long-range impacts we may be causing.

Also, the laboratory scientist may conduct a series of 
experiments on the same materials, but the experiments can be 
stopped and those materials examined after each stage. Over the 
vast spans of geologic time, a given mass of earth material may 
have been transformed a half-dozen times or more, under 
different conditions each time. The history of the rock that ulti-
mately results may be very difficult to decipher from the end 
product alone.

Process
Occurs Over a Time Span  
of About This Magnitude

Rising and falling of tides 1 day

“Drift” of a continent by 2–3 
centimeters (about 1 inch)

1 year

Accumulation of energy between 
large earthquakes on a major 
fault zone

10–100 years

Rebound (rising) by 1 meter of a 
continent depressed by ice  
sheets during the Ice Age

100 years

Flow of heat through 1 meter  
of rock

1000 years

Deposition of 1 centimeter of fine 
sediment on the deep-sea floor

1000–10,000 years

Ice sheet advance and retreat 
during an ice age

10,000–100,000 years

Life span of a small volcano 100,000 years

Life span of a large volcanic  
center

1–10 million years

Creation of an ocean basin such  
as the Atlantic

100 million years

Duration of a major  
mountain-building episode

100 million years

History of life on earth Over 3 billion years

Table 1.3 Some Representative Geologic-
Process Rates
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8 Section One Foundations

observations or theoretical calculations and modified as neces-
sary until they accommodate all the relevant observations (or 
are discarded when they cannot be reconciled with new data). 
This broader conception of the scientific method is well illus-
trated by the development of the theory of plate tectonics, dis-
cussed in chapter 3. “Continental drift” was once seen as a 
wildly implausible idea, advanced by an eccentric few, but in 
the latter half of the twentieth century, many kinds of evidence 
were found to be explained consistently and well by movement 
of plates—including continents—over earth’s surface. Still, 
the details of plate tectonics continue to be refined by further 
studies. Even a well-established theory may ultimately be 
proved incorrect. (Plate tectonics in fact supplanted a very dif-
ferent theory about how mountain ranges form.) In the case of 
geology, complete rejection of an older theory has most often 
been caused by the development of new analytical or observa-
tional techniques, which make available wholly new kinds of 
data that were unknown at the time the original theory was 
formulated.

The Motivation to Find Answers
In spite of the difficulties inherent in trying to explain geologic 
phenomena, the search for explanations goes on, spurred not 
only by the basic quest for knowledge, but also by the practical 
problems posed by geologic hazards, the need for resources, 
and concerns about possible global-scale human impacts, such 
as ozone destruction and global warming.

The hazards may create the most dramatic scenes and 
headlines, the most abrupt consequences: The 1989 Loma 
Prieta (California) earthquake caused more than $5 billion in 
damage; the 1995 Kobe (Japan) earthquake (figure 1.6), similar 
in size to Loma Prieta, caused over 5200 deaths and about $100 
billion in property damage; the 2004 Sumatran earthquake 
claimed nearly 300,000 lives; the 2011 quake offshore from 

Geology and the Scientific Method
The scientific method is a means of discovering basic scientific 
principles. One begins with a set of observations and/or a body 
of data, based on measurements of natural phenomena or on 
experiments. One or more hypotheses are formulated to ex-
plain the observations or data. A hypothesis can take many 
forms, ranging from a general conceptual framework or model 
describing the functioning of a natural system, to a very precise 
mathematical formula relating several kinds of numerical data. 
What all hypotheses have in common is that they must all be 
susceptible to testing and, particularly, to falsification. The idea 
is not simply to look for evidence to support a hypothesis, but to 
examine relevant evidence with the understanding that it may 
show the hypothesis to be wrong.

In the classical conception of the scientific method, one 
uses a hypothesis to make a set of predictions. Then one devises 
and conducts experiments to test each hypothesis, to determine 
whether experimental results agree with predictions based on 
the hypothesis. If they do, the hypothesis gains credibility. If 
not, if the results are unexpected, the hypothesis must be modi-
fied to account for the new data as well as the old or, perhaps, 
discarded altogether. Several cycles of modifying and retesting 
hypotheses may be required before a hypothesis that is consis-
tent with all the observations and experiments that one can con-
ceive is achieved. A hypothesis that is repeatedly supported by 
new experiments advances in time to the status of a theory, a 
generally accepted explanation for a set of data or observations.

Much confusion can arise from the fact that in casual con-
versation, people often use the term theory for what might better 
be called a hypothesis, or even just an educated guess. (“So, 
what’s your theory?” one character in a TV mystery show may 
ask another, even when they’ve barely looked at the first evi-
dence.) Thus, people may assume that a scientist describing a 
theory is simply telling a plausible story to explain some data. A 
scientific theory, however, is a very well-tested model with a very 
substantial and convincing body of evidence that supports it. A 
hypothesis may be advanced by just one individual; a theory has 
survived the challenge of extensive testing to merit acceptance by 
many, often most, experts in a field. The Big Bang theory is not 
just a creative idea. It accounts for the decades-old observation 
that all the objects we can observe in the universe seem to be 
moving apart. If it is correct, the universe’s origin was very hot; 
scientists have detected the cosmic microwave background radia-
tion consistent with this. And astrophysicists’ calculations predict 
that the predominant elements that the Big Bang would produce 
would be hydrogen and helium—which indeed overwhelmingly 
dominate the observed composition of our universe.

The classical scientific method is not strictly applicable 
to many geologic phenomena because of the difficulty of ex-
perimenting with natural systems, given the time and scale 
considerations noted earlier. For example, one may be able to 
conduct experiments on a single rock, but not to construct a 
whole volcano in the laboratory, nor to replicate a large mete-
orite impact (like that of figure 1.5) to study its effects. In such 
cases, hypotheses are often tested entirely through further 

Figure 1.5 
Meteor Crater, Arizona.

Source: U.S. Geological Survey/Photograph by David J. Roddy, 
USGS Branch of Astrogeology.
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Figure 1.6
Overturned section of Hanshin Expressway, eastern Kobe, 
Japan, after 1995 earthquake. This freeway, elevated to save 
space, was built in the 1960s to then-current seismic design 
standards.

Source: Photograph by Christopher Rojahn, Applied Technology 
Council.

Honshu, Japan, killed over 15,000 people and caused an 
estimated $300 billion in damages. The 18 May 1980 eruption 
of Mount St. Helens (figure 1.7) took even the scientists moni-
toring the volcano by surprise, and the 1991 eruption of Mount 
Pinatubo in the Philippines not only devastated local residents 
but caught the attention of the world through a marked decline 
in 1992 summer temperatures. Efforts are underway to provide 
early warnings of such hazards as earthquakes, volcanic erup-
tions, and landslides so as to save lives, if not property. Like-
wise, improved understanding of stream dynamics and more 
prudent land use can together reduce the damages from flood-
ing (figure 1.8), which amount in the United States to over  
$1 billion a year and the loss of dozens of lives annually. Land-

Figure 1.7
Ash pours from Mount St. Helens, May 1980.

Source: U.S. Geological Survey/Photograph by Peter Lipman.

Figure 1.8
A major river like the Mississippi floods when a large part of the 
area that it drains is waterlogged by more rain or snowmelt than 
can be carried away in the channel. Such floods—like that in 
 summer 1993, shown here drenching Jefferson City, Missouri—
can be correspondingly long-lasting. Over millennia, the stream 
builds a floodplain into which the excess water naturally flows; 
we build there at our own risk.

Source: Photograph by Mike Wright, courtesy Missouri 
Department of Transportation.

slides and other slope and ground failures (figure 1.9) take a 
similar toll in property damage, which could be reduced by 
more attention to slope stability and improved engineering 
practices. It is not only the more dramatic hazards that are 
costly: On average, the cost of structural damage from unstable 
soils each year approximately equals the combined costs of 
landslides, earthquakes, and flood damages in this country.

It is worth noting that as scientists become better able to 
predict such events as earthquakes and volcanic eruptions, new 
challenges arise: How certain should they be before a prediction 
is issued? How best to educate the public—and public offi-
cials—about the science behind the predictions and its limita-
tions, so that they can prepare/respond appropriately? What if a 
prediction is wrong? Such issues will be examined in later 
chapters.

Our demand for resources of all kinds continues to grow 
and so do the consequences of resource use. In the United 
States, average per-capita water use is 1500 gallons per day; in 
many places, groundwater supplies upon which we have come 
to rely heavily are being measurably depleted. Worldwide, 
water-resource disputes between nations are increasing in number. 
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